
24

Kami: A Platform for High-Level Parametric Hardware
Specification and Its Modular Verification

JOONWON CHOI∗, MURALIDARAN VIJAYARAGHAVAN∗, BENJAMIN SHERMAN, ADAM
CHLIPALA, and ARVIND, MIT CSAIL, USA

It has become fairly standard in programming-languages research to verify functional programs in proof

assistants using induction, algebraic simplification, and rewriting. In this paper, we introduce Kami, a Coq

library that uses labeled transition systems to enable similar expressive and modular reasoning for hardware

designs expressed in the style of the Bluespec language. We can specify, implement, and verify realistic

designs entirely within Coq, ending with automatic extraction into a pipeline that bottoms out in FPGAs.

Our methodology has been evaluated in a case study verifying an infinite family of multicore systems, with

cache-coherent shared memory and pipelined cores implementing (the base integer subset of) the RISC-V

instruction set.

CCS Concepts: • Hardware → Theorem proving and SAT solving; Hardware description languages and
compilation; High-level and register-transfer level synthesis;

Additional Key Words and Phrases: formal verification, hardware, proof assistants

ACM Reference Format:
Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, and Arvind. 2017. Kami: A

Platform for High-Level Parametric Hardware Specification and Its Modular Verification. Proc. ACM Program.
Lang. 1, ICFP, Article 24 (September 2017), 30 pages.

https://doi.org/10.1145/3110268

1 INTRODUCTION
In the face of skepticism about the practical potential of formal methods, the standard response of

the specialist is that formal methods already play a widespread and essential role in quality control

for the computer-hardware industry. However, researchers with experience only on the software

side might be surprised at some pervasive limitations of the kinds of formal methods that industry

applies to hardware, typically based on model checking and satisfiability solving, where analysis

reduces to explicit state-space exploration. For instance:

(1) Verification effort is focused on (relatively) small components of full systems, for instance

on the floating-point units of processors. While complete verification of the algorithms

implementing floating-point arithmetic requires heroic effort by itself, these individual results

are not composed into full-system theorems.
(2) Relatively weak properties are proved, with considerable abstraction gaps from the natural

correctness conditions, even for limited components of full systems. For instance, it is common

∗
Choi and Vijayaraghavan are primary authors with equal contributions, and their two names are listed alphabetically.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

2475-1421/2017/9-ART24

https://doi.org/10.1145/3110268

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268

24:2 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

for engineers to think about specifications and manually come up with invariants to be

asserted about circuits, with no formal connection back to specs.

(3) The scope of verifiable components is fundamentally limited by the state-space-explosion
problem. For example, in order to verify cache-coherence protocols with Murphi [Dill et al.

1992], a widely used model checker designed for that exact task, at one point the biggest

system that could be verified had only 3 cores interacting with a single-address memory

having two potential values. While improvements to algorithms and hardware (for running

the analysis) continually increase the feasible system size, there are fundamental limitations

of such tools that explore finite state spaces, in the face of exponential growth in state spaces

as we add processor cores or memory addresses. One mitigation, rarely applied in industry, is

verification of parameterized systems, with variables standing for e.g. the number of cores. But

adoption of this strategy is mostly limited to models of real hardware systems, not connected

to synthesis pipelines that generate real silicon.

Consider instead the standard procedure used in the programming-languages research commu-

nity to verify software programs with proof assistants.

(1) Implement the program in the functional programming language built into the proof assistant.

(2) In a rich higher-order logic, state the most natural correctness theorem for the program.

(3) Prove the theorem using scripts of tactics for proof steps at different levels of granularity,
saving the user from tedious details while still giving an opportunity to spell out the key

insights manually.

(4) Use extraction to translate the program to a language like OCaml automatically, and from

here use standard development tools to compile and run it.

In this paper, we introduce the Kami framework for the Coq proof assistant, which brings

this style of development and verification to the world of computer architecture, simultaneously

reversing all of the weaknesses enumerated above for most hardware-verification tools. Kami

makes it possible to code and verify a fairly realistic processor within Coq and then extract it to

run on FPGAs (and almost certainly in silicon, though we have not yet had the opportunity to

fabricate a “real” chip). We also emphasize that our use of “verified” is more in the tradition of

CompCert [Leroy 2006] or seL4 [Klein et al. 2009] than of the day-to-day practices of verification

engineers in the hardware industry: we prove that a system with any number of shared-memory
cores with associated coherent caches correctly implements the functional-correctness specification of
our instruction set, with respect to sequential consistency.

We must reconsider each of the steps of the recipe above, so that they apply properly to hardware

designs. On one level, the central new challenge is the fundamental limitations of hardware circuits,
where every variable must have a finite domain and where loops and recursion are not supported

directly. On another level, the challenge is to support all of the opportunities that circuits provide to
realize levels of parallelism far beyond what is feasible in software, where in some sense all the gates

on a circuit board are constantly running in parallel. Just as most uses of proof assistants verify

functional programs rather than assembly programs, to help the proof author focus on the essential

problems, in Kami we code hardware designs at a higher abstraction level than circuits: we formalize

a subset of the Bluespec hardware description language, whose fundamental structuring principle

is sets of state-change rules that execute atomically, with a scheduler automatically choosing how

to interleave them.

Readers may be more familiar with Verilog or other hardware descriptions at the level of so-called

register-transfer languages (RTL). RTL programs describe circuits as networks of gates, but without

physical-placement details. Concerns of timing complicate programming at this level. The designer

is often required to know how many clock cycles go by between when a signal flows into a module

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:3

on one wire and when a related signal comes out on another wire. Bluespec abstracts these issues,

much like how a C compiler abstracts details of a call stack. It is also the case that RTL designs make

parallelism explicit, which is convenient for maximizing performance, but which creates challenges

for correctness reasoning: proofs must consider explicit simultaneous execution of components.

Bluespec instead exposes a transaction-based model with the fiction that fragments of code run

independently and in sequence, and the commercial Bluespec compiler deals automatically with the

challenges (timing and parallelization) that Verilog forces upon the programmer. As we progress

through introducing the modular proof techniques at the heart of Kami, it should become clear

that essentially none of them would apply in the traditional RTL model. It naturally follows that

instead of verifying the circuits produced after synthesis from Bluespec, we verify that a high-level

implementation refines a high-level specification, both written in Kami. If we trust (or later verify)

the Bluespec compiler to preserve the semantics while translating from Kami programs into RTL

circuits, then we are guaranteed that the RTL circuits of the implementation refine the high-level

specification
∗
.

The next challenge is choosing the right kind of correctness theorem to ascribe to the com-

ponents of a system, so that the individual theorems can be composed in a black-box way into

full-system results. Here we follow our previous work [Vijayaraghavan et al. 2015] in adapting ideas

from process algebra. We formalize hardware components as labeled transition systems, with an

interaction-centric operational semantics that helps us reason about each component individually

while abstracting over its environment. Our previous work [Vijayaraghavan et al. 2015] suffers

from one of the problems we mentioned earlier: it applies only to models of real hardware designs,
with no path toward extraction-style generation of synthesizable circuits. We previously applied a

manual and error-prone process to example hardware designs, formalizing each one directly as

an inductive relation in Coq. With Kami, we work instead with explicit program syntax designed

to be trivially translatable to real Bluespec syntax, to which we can apply Bluespec’s commercial

synthesis tools to produce hardware circuits.

The last challenge is to figure out the hardware analogues of the workhorse proof tactics of

software verification, like induction, execution-based simplification, and rewriting
†
, whose closest

equivalents turn out to be simulation arguments, inlining of method definitions, and replacement

of one hardware module with another proved to be compatible, respectively.

The rest of the paper proceeds through a running example (Section 2); the syntax, semantics,

and correctness notions of Kami (Section 3); more background on Bluespec and its practicality,

including the approach to automatic RTL synthesis (Section 4); the key framework lemmas used

in modular proofs (Section 5); our case-study multicore system (Section 6); results synthesizing

and running it on FPGAs (Section 7); related work (Section 8); and remaining barriers to industrial

adoption (Section 9).

Our implementation and benchmarks are available as open source:

https://github.com/mit-plv/kami

2 KAMI BY EXAMPLE
We will introduce the main concepts of the Kami infrastructure via a simple example. Figure 1

represents a Kami module that continuously increments a counter and outputs the value of the

counter. It consists of a register counterReg, representing the state of the counter, and a rule
incrementAndOutput describing an allowable state transition in a single step of the system, incre-

menting the counter. All registers take values in finite sets (since they represent hardware state).

∗
Our future-work plans include verifying a suitable compiler for core Bluespec.

†
For Coq experts: induction, simpl, and rewrite

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

https://github.com/mit-plv/kami

24:4 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

1 Definition counter cSz := MODULE {
2 Register "counterReg" : Bit cSz <- Default
3 with Rule "incrementAndOutput" :=
4 Read val <- "counterReg";
5 Write "counterReg" <- #val + $1;
6 Call "output"(#val);
7 Retv
8 }.

Fig. 1. A simple counter component in Kami

The code we show, in this figure and later ones, is literally embedded in standard Coq source files,

thanks to Coq’s extensible parser.

A rule consists of a sequence of actions, which are executed atomically. During execution of

a rule, when an action reads a register, it receives the current state of the register, i.e., the value
of the register before the rule starts executing; when it writes to a register, the state update is

collected (a register can be written only once in a rule); and when it calls a method, it sends the
method call’s argument to the external environment via wires in the hardware implementation

corresponding to this module. The external environment could either be other Kami modules or an

already-existing hardware design written in a traditional HDL like Verilog/VHDL, but its interaction

with a Kami module remains the same, via methods. Once a rule is executed, the state updates

collected during the execution are applied en-masse to the state. The incrementAndOutput rule
keeps executing forever, incrementing the counter and outputting the value. During the execution

of one rule, semantically, no other rule in the whole system executes, including those in the external

environment. When these modules are compiled into hardware circuits, however, a scheduler is

also generated (in hardware) that schedules multiple such rules simultaneously, as long as the

concurrent execution of these rules is serializable.

Since Kami is embedded inside Coq, we can produce Kami modules with functions in Gallina,

the functional programming language in Coq. In other words, we “for free” get parameterized

Kami modules, meaning that they may depend on formal parameters that are not instantiated

immediately with concrete values. For instance, the counter module is parameterized on cSz, which
represents the bit width of counterReg. Parameters can be more complex. For instance, we could

parameterize the counter over a Gallina function to implement the single-step evolution of the

counter value, calling it in place of the “+ $1” operation in Figure 1. Parameters may range over

expressions, actions, or even other Kami modules.

Pipelining is a widely used optimization for improving performance in hardware systems. We

can refine the previous example using a two-stage pipeline containing a producer, a consumer,

and a queue in between. The producer and consumer can be scheduled to operate concurrently,

potentially increasing throughput, though the real value of pipelining will be more apparent in our

later full-scale examples with more intensive computation.

Figure 2 shows the Kami code for the producer-consumer optimization. The queuemodule defines

two methods: 1) enq, for enqueuing the supplied argument into its elts buffer, returning nothing,

and 2) deq, for dequeuing the oldest entry from the buffer and returning it. These methods are

called by producer and consumer respectively. Datatypes in Kami are not restricted to bit-vectors;

for example, register elts in queue holds a vector of dataType entries, of size 2qSz, with dataType
and qSz parameters for the module queue.
An action in a rule or method can be an Assert, which ensures that the rule or method is

executed only when the assertion holds. See, for example, method deq in queue, which ensures

that the queue is nonempty whenever deq is called. Note that these are not the usual assertions

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:5

1 Definition producer cSz := MODULE {
2 Register "counterReg" : Bit cSz <- Default
3 with Rule "produce" :=
4 Read val <- "counterReg";
5 Call "enq"(#val);
6 Write "counterReg" <- #val + $1;
7 Retv
8 }.
9 Definition consumer cSz := MODULE {
10 Rule "consume" :=
11 Call val: Bit cSz <- "deq"();
12 Call "output"(#val);
13 Retv
14 }.
15 Definition queue dataType qSz := MODULE {
16 Register "elts" : Vector dataType qSz <- Default
17 with Register "head": Bit (qSz+1) <- Default
18 with Register "tail": Bit (qSz+1) <- Default
19 with Method "enq"(d : dataType) : Unit :=
20 Read elts <- "elts";
21 Read head <- "head";
22 Read tail <- "tail";
23 Assert (#tail + $(1<<qSz) != #head);
24 Write "elts" <- #elts@[#head <- #d];
25 Write "head" <- #head + $1;
26 Retv
27 with Method "deq"() : dType :=
28 Read elts <- "elts";
29 Read head <- "head";
30 Read tail <- "tail";
31 Assert (#tail != #head);
32 Write "tail" <- #tail + $1;
33 Return #elts@[#tail]
34 }.
35 Definition prodQCons cSz qSz :=
36 producer cSz + queue (Bit cSz) qSz + consumer cSz.

Fig. 2. A producer-consumer example

of, say, C programs, where it is a program error if an assertion could ever fail at runtime. Rather,

following Bluespec, assertions are guards to control which rules are enabled when.

Composing modules in Kami semantically results in a new Kami module that consists of the

union of the registers and rules, plus the union of noninteracting methods, i.e., those that are not
defined by one and called by the other; the definitions of the interacting methods are semantically

inlined at the places of their calls. In our example, when we compose the producer, queue, and

consumer, the resulting module has registers counterReg, elts, head, and tail, rules produce
and consume, and no resulting methods, with the definitions of enq and deq semantically inlined

in the produce and consume rules, respectively.

It is easy to see informally that the prodQConsmodule indeed behaves just like the countermod-

ule in any external context that implements the output method. The producer keeps incrementing

the counter and enqueuing these values, while the consumer module keeps dequeuing these values

and outputting them, so the trace produced by prodQCons, consisting of output method calls,

matches that produced by counter, denoted as (prodQCons cSz qSz) ⊑ (counter cSz). We will

use the task of verifying that prodQCons implements counter as a running example throughout

the paper.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:6 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

prodQCons ⊑ counter

producer + queue + consumer ⊑ counter

queue + (producer + consumer) ⊑ counter

nativeQueue + (producer + consumer) ⊑ counter

| nativeQueue + (producer + consumer) |⊑ counter

rule correspondence

[definitions]

[associativity and commutativity]

[substitution]

[inlining]

(Theorem 5.2)

(Theorem 5.4)

(Theorem 5.5)

(Theorem 5.6)

Fig. 3. Steps to prove that prodQCons implements counter (parameters are omitted for brevity)
1 Definition nativeQueue dType (def: dType) := MODULE {
2 Register "elts" :< list dType <- nil
3 with Method "enq"(d : dType) : Unit :=
4 Read elt :< list dType <- "elts";
5 Write "elts" <- #<(elt ++ [d]);
6 Retv
7 with Method "deq"() : dType :=
8 Read elt :< list dType <- "elts";
9 Assert $$@(match elt with nil => false | _ => true end);
10 Write "elts" <- #<(tl elt);
11 Ret (match elt with nil => $$def | h :: t => #h end)
12 }.

Fig. 4. A Gallina list-based queue specification

Figure 3 shows a high-level overview of the tasks involved in the verification; we elaborate

on each of these tasks later in the paper. The hardware queue module is first substituted with a

list-based specification of an unbounded queue, i.e., the buffer inside this specification is represented
by a Gallina list. The method calls enq and deq are then inlined at call sites. Next, one has to prove

a simulation relation between the states in the inlined version of prodQCons and counter via rule
correspondence. This proof uses the invariant that every element in the queue is the successor of the

previous element, and the youngest element has the same value as the counter in producer. The
value of counterReg in countermust match the value of counterReg in prodQConswhenever the
queue is empty, and if not, must match the head of the queue in prodQCons. The rule correspondence
is then used to produce a proof of trace inclusion. In Section 5, we decompose these verification

tasks and detail the general proof ingredients behind them.

We will elaborate on replacing the queue with a Gallina list-based queue, given in Figure 4. First

note that the native queue contains a register elts that stores a Gallina list of Kami elements

of Kami type dType. Since the Gallina list does not have a capacity, the queue is unbounded; we
can always append an element to the tail of the list. Reading the register returns a Gallina list

that can be manipulated using Gallina functions (here elt ++ [d]). Note that in normal Kami

code (without Gallina terms), Kami variables act as the variables we are used to from functional

programming, but here, we take advantage of a pun enabled by the encoding we chose for variable

binding, parametric higher-order abstract syntax [Chlipala 2008]. In brief, this encoding style

represents terms as polymorphic functions, parameterized over representation types for variables,

one per object-language type. For variables of embedded Coq types, however, we hardcode their

representation types to match Coq’s “native” types. In this way, wherever Kami’s grammar asks for

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:7

a variable, we are free to embed normal Gallina terms. For instance, in Figure 4, we give Gallina

expression #<(elt ++ [d]) in a variable position, written into register elts.
Whenever an element is dequeued, we check that the list is not empty using a Gallina match

expression, update the elts register to contain the tail of the original list, and return the head of

the original list, again using the Gallina match expression. The last step requires a default value

def, which is never returned by this method in any call since the list is asserted to be nonempty.

The reader may at this point be feeling tricked by our earlier descriptions, as clearly here we are

mixing in conventional high-level functional-programming code in what is purportedly a “hardware

design.” We do not depend on a general way of compiling functional programs to hardware. Instead,

designs that use such features are for specification purposes only: they cannot be synthesized to

circuits. Still, we found it convenient to define one Kami language with embedding of normal Coq

programs as an optional feature, by convention to be used only for specifications, not “real” designs.

As a result, our implementations and specifications are programs in the same language, which

economizes on proof machinery.

3 KAMI LANGUAGE: SYNTAX AND SEMANTICS
3.1 Syntax
Figure 5 gives the syntax of the Kami language. Kami types (τ) include Booleans (Bool), bit-vectors

(Bit n), homogeneous vectors of length 2
n
(Vector τ n), and records ({

−−−→
k :: τ }). In addition, one can

inject Gallina terms into Kami modules as mentioned in Section 2, where the specification of the

queue module is given using Gallina lists. We allow any Gallina type (t) to be lifted implicitly as a

type (σ) in the Kami language. This feature should only be used in specifications, since in general

Gallina types are infinite and cannot be represented uniformly in hardware circuits.

Expressions consist of constants (c), variables (x), operations on expressions (op(e⃗)), vector

constructors ([e⃗]), record constructors ({
−−−−→
k = e}), vector-index reads (e[e]), and record-field reads

(e .k). Actions consist of register reads (let x = r in a), register writes (r := e ; a), method calls

(let x = f (e) in a), let bindings (let x = e in a), conditional actions (if e then a else a ; a), assertions
(assert e ; a), and returns (return e). Actions may include method calls both to their own modules

and to different ones.

A Kami module is either a basic module containing a set of registers with initial values (⟨r , c⟩),
a set of rules (⟨s,a⟩), and a set of methods (⟨f , λx : τ . a⟩); or a composition of modules (m +m).

The identifiers for register names and method definition names must be unique across all the

basic modules taking part in a composition. The registers in a basic module can be initialized with

syntactic constants, for syntactic Kami types; or with arbitrary Gallina terms, for lifted Gallina

types.

Expressions and actions are typed in a straightforward manner, and a Kami module is well-typed

if all its rules and methods are well-typed.

3.2 Semantics
A transition in a Kami module corresponds exactly to the execution of one rule in the system.

This rule may lead to a chain of method calls, thereby allowing multiple methods to participate

simultaneously in a transition. This chain of method calls can go out of a module (by calling a

method in the external environment) and later come back into the same module (when the external

environment responds by calling a method in the module). Thus, a priori, we do not know the set

of methods that can participate in any transition. We therefore allow any combination of methods

to be part of a transition orchestrated by a rule in a module. In the same vein, a set of methods of a

module may participate in a transition orchestrated by a rule in the external environment.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:8 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

N n
Identifier r , f , s,k, ...
Constant c, op, ...
Variable x

Kami type τ ::= Bool
| Bit n
| Vector τ n

| {
−−−→
k :: τ }

Gallina type t
Type σ ::= τ | t

Expression e ::= c | x | op(e⃗) | [e⃗] | {
−−−−→
k = e} | e[e] | e .k

Action a ::= let x = r in a
| r := e ; a
| let x = f (e) in a
| let x = e in a
| if e then a else a ; a
| assert e ; a
| return e

Module m ::= ⟨[
−−−→
⟨r , c⟩], [

−−−→
⟨s,a⟩], [

−−−−−−−−−−−→
⟨f , λx : τ . a⟩]⟩

| m +m

Fig. 5. Kami language syntax

The semantics below formalizes these notions of rules and methods participating in transitions.

They can be understood in terms of 5 main ideas: 1) expressions are read-only operations, 2)

actions are the smallest unit of a transition that can be composed with other actions, 3) a substep
is a composition of several actions, each of them corresponding to a rule or method, with some

additional constraints, 4) a step is a substep that corresponds to a single atomic transition in the

module, and 5) a behavior is a sequence of steps starting from the initial state of the module, i.e., it
is the transition sequence of a module.

Expressions. Figure 6a and Figure 6b give the denotational semantics for Kami types and expres-

sions, respectively. Variables are replaced with the corresponding values before they are evaluated

(by the semantics of actions, which create the variables), and hence their denotations are omitted.

Actions. Figure 6c gives the semantics for actions. The semantics for an action a is given by a

judgment o
ℓ
−→
a

(u,v), where o is the register mapping, denoting the current state; u is the map of

register updates during execution of a; and v is the value returned after executing action a (which

is relevant only if the action is the body of a method definition). Most interestingly, ℓ is a label,
in the tradition of labeled transition systems from process algebra. It summarizes all externally

visible interactions of the step. While in process algebra such interactions are sends and receives of

messages on channels, in Kami the analogous interactions are making and receiving method calls.

Actions themselves can only call methods, not define them, so the action rules only show examples

of extending a label with a call f (a) = b. While the arguments are computed locally within the

action, the return value is assumed and cannot be computed, in the same way that channel-receive

operations are modeled in traditional process algebra.

We use the operator ⊎ for the disjoint union of register maps and labels. Such a union is only

well-defined when the operands deal with disjoint registers or method names, respectively. For

each use of ⊎ in a rule’s conclusion, we assume disjointness of the arguments, as an implicit extra

premise.

In the producer example in Figure 2, the action corresponding to rule produce results in the

following transition (where Retv is shorthand for returning an empty value).

{counterReg 7→ v}
{enq(v)=() }

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Read val <- "counterReg";
Call "enq"(#val);
Write "counterReg" <- #val + $1;
Retv

({counterReg 7→ v + 1}, ())‡

‡ () represents a word(0) value, a dummy “unit” placeholder.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:9

JBoolK = bool
JBit nK = word(n)§

JVector τ nK = word(n) → Jτ K
J{k1 :: τk1, . . . , kn :: τkn }K = ∀(k : {k1, . . . , kn }). Jτk K

(a) Denotations for Kami types (into Gallina types)

§
a bit-vector of size n, implemented in Coq

JcK = c

Jop(e⃗)K = JopKop (
−−→
JeK)

J[e0, . . . , e2n−1]K = λi : word(n). Jei K
J{k1 = ek1, . . . , kn = ekn }K = λk : {k1, . . . , kn }. Jek K

Jev [ei]K = Jev K(Jei K)
Je .kK = JeK(k)

(b) Denotations for expressions

ActionReadReg:

o
ℓ

−−−−−−−→
[o (r)/x]a

(u,v)

o
ℓ

−−−−−−−−−→
let x=r in a

(u,v)

ActionWriteReg:

JeK = vr r < u o
ℓ
−→
a

(u,v)

o
ℓ

−−−−−−→
r :=e ; a

(u[r ← vr],v)

ActionCall:

JeK = va (f (_) = _) < ℓ o
ℓ

−−−−−−→
[vr /x]a

(u,v)

o
{f (va)=vr }∪ℓ
−−−−−−−−−−−→
let x=f (e) in a

(u,v)

ActionLet:

JeK = vl o
ℓ

−−−−−−→
[vl /x]a

(u,v)

o
ℓ

−−−−−−−−−→
let x=e in a

(u,v)

ActionIfElseT:

JeK = true o
ℓt
−−→
at

(ut ,vt) o
ℓ
−→
a

(u,v)

o
ℓt⊎ ℓ

−−−−−−−−−−−−−−−−−→
if e then at else af ; a

(ut ⊎ u,v)

ActionIfElseF:

JeK = false o
ℓf
−−→
af

(uf ,vf) o
ℓ
−→
a

(u,v)

o
ℓf ⊎ ℓ

−−−−−−−−−−−−−−−−−→
if e then at else af ; a

(uf ⊎ u,v)

ActionAssert:

JeK = true o
ℓ
−→
a

(u,v)

o
ℓ

−−−−−−−−→
assert e ; a

(u,v)

ActionReturn:

JeK = v

o
∅

−−−−−−→
return e

([],v)

(c) Semantics for actions

EmptyRule:

o
{•}
−−→
m

[]

EmptyMeth:

o
∅
−→
m

[]

Rule:

⟨_,a⟩ ∈ rulesOf(m)

o
ℓ
−→
a

(u, _)

o
{•}⊎ ℓ
−−−−−→

m
u

Meth:

⟨f , λx . a⟩ ∈ methsOf(m)

o
ℓ

−−−−−−→
[va/x]a

(u,vr)

o
{f (va)=vr }⊎ ℓ
−−−−−−−−−−−−→

m
u

SubstepConcat:

o
ℓ1
−→
m

u1 o
ℓ2
−→
m

u2

o
ℓ1⊎ ℓ2
−−−−−→

m
u1 ⊎ u2

(d) Substep semantics

StepIntro:

o
ℓ
−→
m

u m ⊙ ℓ

o
ℓ\m
===⇒
m

u

(e) Step semantics

InitBehavior:

m ⇓ ⟨initRegs(m), []⟩

SequenceBehavior:

m ⇓ ⟨o,α⟩ o
ℓ
=⇒
m

u

m ⇓ ⟨o[u],α ; ℓ⟩∥

(f) Behavior semantics

∥ (α ; ℓ) denotes the concatenation of ℓ to list α .

Fig. 6. The Kami language semantics

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:10 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

Similarly, in the queue example in Figure 2, the action corresponding to method deq runs

as follows. The precondition (t , h ⇒ . . .) for values t and h records the guard condition

corresponding to any execution of this action, arising from an Assert in the code.

t , h ⇒ {elts 7→ e, head 7→ h, tail 7→ t }
{ }

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Read elts <- "elts";
Read head <- "head";
Read tail <- "tail";
Assert (#tail != #head);
Write "tail" <- #tail + $1;
Return #elts@[#tail]

({tail 7→ t + 1}, e (t))

Substeps. A substep defines the execution of a collection of at most one rule and any number

of methods. It is derived from the semantics of the actions comprising the rule and the methods

as shown in Figure 6d. A set of one rule and many methods can be combined into a substep only

if they have disjoint register updates and disjoint method calls. The methods participating in a

substep, as well as all the called methods in all the actions forming the substep, form a label (as
alluded to, when describing the semantics of actions). A label ℓ is a set formed from the following

elements:

Label element ω ::= • | f (a) = b | f (a) = b

The label elements denote the presence of a rule (•), a called method (f (a) = b), or its dual, an

executed method (f (a) = b) with method name f , argument a, and return value b. Two label

elements can be combined into a label only when they overlap neither by calling nor defining

the same method. This convention prevents a method from taking part twice in a transition and

also prevents two actions that call the same method from participating in a substep. The latter

restriction is needed because method calls are translated into wires in hardware; there is only one

set of wires for a method, so a method can be called only once in a transition.

The semantics for a substep is given by a judgment o
ℓ
−→
m

u, wherem is the target module, o is the

old state, and u is the map containing register updates (Figure 6d). Rule EmptyRule generates a rule-

like substep, but without any participating rules. This rule is typically used in specification modules

to allow mapping transitions in the implementation to empty transitions in the specification,

when the implementation’s transition only affects low-level state that does not map directly to

specification-level state. Rule EmptyMeth is defined for convenience and serves the purpose of the

nil constructor in a list. Rules Rule and Meth describe the cases where one rule or one method is

executed, respectively, and the resulting substep is called a singleton. rulesOf(m) and methsOf(m)
collect all rules and methods in the module, respectively. Two substeps with disjoint effects may

merge (SubstepConcat).

The nonempty substeps for the module prodQCons in Figure 2 are as follows (parameters of the

module definition are omitted for brevity, and all arithmetic is on constant-sized bit-vectors):

• For rule consume:

{counterReg 7→ c, elts 7→ e, head 7→ h, tail 7→ t }
{•,deq(())=v,output(v)=() }
−−−−−−−−−−−−−−−−−−−−−→

prodQCons
{}

• For method deq:

t , h ⇒ {counterReg 7→ c, elts 7→ e, head 7→ h, tail 7→ t }
{deq(())=e (t) }
−−−−−−−−−−−→

prodQCons
{tail 7→ t + 1}

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:11

• For the combination of rule consume and method deq (using SubstepConcat):

t , h ⇒ {counterReg 7→ c, elts 7→ e, head 7→ h, tail 7→ t }
{•,deq(())=v,output(v)=(),deq(())=e (t) }
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

prodQCons

{tail 7→ t + 1}

For the combination of rule consume, method enq, and method deq (using SubstepConcat):

t + 2qSz , h ∧ t , h ⇒

{counterReg 7→ c, elts 7→ e, head 7→ h, tail 7→ t }
{•,deq(())=v,output(v)=(),enq(d)=(),deq(())=e (t) }
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

prodQCons

{elts 7→ e[h 7→ d], head 7→ h + 1, tail 7→ t + 1}

Seven other rule/method combinations are possible, but we will not list them here, as they work

out quite similarly to the ones we have shown. Note, though, that the rules produce and consume
cannot be combined using SubstepConcat since the labels of the combining substeps should be

disjoint and hence can have at most one • element.

Steps. A step is a single atomic state transition of a module, where all internal communications

are hidden. It also ensures that internal calls are executed correctly, i.e., if a f (a) = b label came

about by a call to method f defined in the same module, then f (a) = b is also present, and vice

versa.

Figure 6e gives the details. The semantics of a step is given by the judgment (o
ℓ
=⇒
m

u), which is

similar to the one for substeps. ℓ \m removes all mentions of methods in ℓ that are both defined

and called inm, andm ⊙ ℓ enforces the constraint on labels mentioned before, i.e., f (a) = b and

f (a) = b are either both present or both absent for a method called and defined inm.

In the module prodQCons in Figure 2, the only possible steps are as follows:

t + 2qSz , h ⇒ {counterReg 7→ c, elts 7→ e, head 7→ h, tail 7→ t }
{•}

−−−−−−−−→
prodQCons

{counterReg 7→ c + 1, elts 7→ e[h 7→ c], head 7→ h + 1}

Note that the counterReg’s value c is inserted at head position h of the vector map e of elements

elts. That is, the value enqueued matches the value that the queue uses to update its internal

registers. Moreover, the labels corresponding to the call and execution of enq are removed.

t , h ⇒ {counterReg 7→ c, elts 7→ e, head 7→ h, tail 7→ t }
{•,output(e (t))=() }
−−−−−−−−−−−−−−−→

prodQCons
{tail 7→ t + 1}

As in the previous case, the argument passed to the output call is e (t) where e is the vector map

denoting the elements elts and t is the value of tail, and the label contains only the external call
output.

No other combination of substeps can produce a step. The methods enq and deq are called within
the module prodQCons and hence must not be present in the step’s label after removing all the

methods that appear in the called and executed positions in the label. Thus, in order to eliminate

these methods in the label, the rule that calls these methods must also execute. Since both the

rules, produce and consume, cannot execute simultaneously, i.e. there cannot be a substep with the

combined effects of execution of both the rules, we are left only with the above two combinations.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:12 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

Behaviors. A behavior is given by a sequence of steps starting from the initial state of a module.

Its semantics are given by the judgmentm ⇓ ⟨n,α⟩, wherem is the module that has reached state

n producing a label sequence α . In Figure 6f, initRegs(m) creates a state by mapping a register

name to its initial value, and o[u] applies the updates u to override values of affected registers in o.
A behavior is therefore given by a serialized sequence of rule executions; people accustomed to

Bluespec call this the one-rule-at-a-time semantics.

3.3 Implementation Relation
We now give the formal definition for the implementation relation between two modules. A module

m is said to implement a modulem′ (orm is said to refinem′), writtenm ⊑m′, iff any trace sequence

produced bym can also be produced bym′. That is,

m ⊑m′ ≜ ∀n α .m ⇓ ⟨n,α⟩ ⇒ ∃n′.m′ ⇓ ⟨n′,α⟩

We writem � m′ to indicate that refinement holds in both directions.

4 COMPILATION INTO HARDWARE CIRCUITS
Kami is inspired by the Bluespec high-level hardware description language, many aspects of which

should feel familiar to a functional-programming audience. However, this approach to hardware

programming is far from mainstream. Most hardware engineers find it quite foreign. The default

reaction is that RTL designs (as in Verilog) are somehow “real” hardware, while higher-level code as

in Bluespec is more like software and counts as a completely separate enterprise. Our view is that

both Bluespec and RTL are significant abstractions above real hardware, e.g. because translating

RTL to physical circuits requires a highly nontrivial process of placement in space. Thankfully,

hardware designers can rely on mature toolsuites to do automated compilation from either starting

point, and we spend a few pages here justifying the practicality of the toolchain that starts from

Bluespec code (which is itself easily produced by desugaring of Kami code).

We will describe the compilation of Kami modules into hardware circuits using the example

shown in Figure 7 (where we use Unit as shorthand for a zero-width bit-vector type). We sketch

the workings of the commercial (unverified) Bluespec compiler; for a complete description of the

algorithm, including the proposed optimizations, refer to [Dave et al. 2007; Esposito et al. 2010; Hoe

and Arvind 2000; Karczmarek et al. 2014; Rosenband and Arvind 2004; Vijayaraghavan et al. 2013].

Each rule compiles into a combinational circuit that generates output signals to update the

registers that the rule writes, starting from the input signals that feed from the registers that the

rule reads. In addition, the rule also produces a single Boolean guard input signal, д, that indicates
that the assertions in the rule are all true, and a Boolean enable output signal, en, that indicates that
the rule has been selected to execute (and this “enable” signal ultimately determines if the registers

written by the rule are updated or not). Similarly, a method definition generates a combinational

circuit that takes as input the signal corresponding to the argument of the method (arg), producing
as output the signal corresponding to the return value of the method (ret), plus a guard output

signal, д, for the assertions. In addition, a method can be called externally, so it has a Boolean input

enable signal, en, to determine if the method is being called or not in the current cycle.

While the semantics of Kami programs executes the rules one by one, the compiler tries to

schedule multiple rules for simultaneous execution (i.e., in one hardware clock cycle) without

violating the one-rule-at-a-time semantics. In this example, rules r1 and r2 can never execute

simultaneously without violating one-rule-at-a-time semantics. Similarly, if method f1 is called
externally (from another rule), then rule r1 cannot execute simultaneously. During a clock cycle,

in any hardware circuit, all the reads of registers happen at the beginning of the clock cycle, and all

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:13

1 Definition example := MODULE {
2 Register "x1" : Bit 32 <- 0
3 Register "x2" : Bit 32 <- 1
4 Register "x3" : Bit 32 <- 2
5 Register "x4" : Bit 32 <- 3
6 with Rule "r1" :=
7 Read v <- "x2";
8 Assert (#v mod 2 == 0);
9 Write "x1" <- #v + $1;
10 Retv
11 with Rule "r2" :=
12 Read v <- "x1";
13 Assert (#v mod 2 == 1);
14 Write "x2" <- #v + $1;
15 Retv
16 with Rule "r3" :=
17 Read v <- "x1";
18 Assert (#v mod 2 == 0);
19 Write "x3" <- #v + $1;
20 Retv
21 with Rule "r4" :=
22 Read v <- "x4";
23 Assert (#v mod 2 == 1);
24 Write "x4" <- #v + $1;
25 Retv
26 with Method "f1"(a: Bit 32): Unit :=
27 Read v <- "x1";
28 Assert (#v mod 2 == 1);
29 Write "x1" <- #a;
30 Retv
31 with Method "f2"(_: Unit): Bit 32 :=
32 Read v <- "x1";
33 Return #v
34 }.

Fig. 7. Kami example to illustrate the com-
pilation procedure

r1 r2r4

r3 f1 f2

Fig. 8. Graph showing the binary relation (<) be-
tween atomic actions, for the example of Figure 7.
x < y is represented by an edge from x toy. Circles
represent rules, and rectangles represent methods.

r4 r3 r2 f2 f1 r1

r3 r4 r2 f2 f1 r1

r4 r3 f2 f1 r2 r1

Fig. 9. Nonexhaustive list of schedules that satisfy
the conditions that preserve one-rule-at-a-time se-
mantics. Dashed lines represent a rule x being dis-
abled by an earlier atomic action y that is enabled,
because the total order for the schedule violates
the constraint x < y.

the writes happen at the end of the clock cycle. Thus, rules r1 and r3 can execute simultaneously

without violating the semantics: it appears as if rule r3 fires, followed by rule r1.
The read and write sets for the rules and the method definitions determine a binary relation (<)

on the set of rules and methods of a Kami module. We use the phrase atomic action to stand for

either a rule or method definition in a Kami module. If an atomic action x has a read or a write to a

register, and another atomic action y has a write to the same register, then x < y. In our example,

the < relation is given by Figure 8. Whenever there is a pair x < y and y < x , we say that x and y
have a conflict.

From the < relation, the Bluespec compiler creates a scheduler circuit, which determines which

rules and methods are executed every hardware clock cycle, and the sequence in which they are

executed. The scheduler statically determines a total order of execution of atomic actions such that

whenever an atomic action is enabled, then all the rules following it that have a conflict with the

former are disabled from firing, even if their guards are true. This ensures that any simultaneous

rule executions are consistent with some serial schedule. The exact constraints on the total order

are as follows:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:14 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

r1.en

r2.en

r3.en

r4.en

scheduler

r1.g

r2.g

r3.g

r4.g

f1.en

f1.gf1.g
f1

x1

f1.x1.en

f1.x1.val

x1 mod2 == 1 ?

f1.arg

f2.g f2.g

f1.en

f2

True

x1
f2.ret

f2.ret r1.gr1
x2

x2 mod2 == 0 ?

x1 mod2 == 1 ?

x1 mod2 == 0 ?

x4 mod2 == 1 ?

x2 + 1

x1 + 1

x1 + 1

x4 + 1

x1

x1

x4

r2

r3

r4

r1.x1.en

r1.x1.val r1.x1.val

f1.x1.valr2.g

r2.x2.en

r2.x2.val

r3.g

r4.g

r3.x3.en

r3.x3.val
r3.x3.val

r3.x3.en

r4.x4.en

r4.x4.val

r1.x1.en r1.en
f1.en f1.x1.en

r2.x2.en r2.en

x1 x1
Reg

x2 x2
Reg

x3x3
Reg

x4 x4
Reg

r2.x2.val

r3.en r4.x4.en r4.en

selector

r4.x4.val

Fig. 10. Hardware circuit generated from Kami module of Figure 7. Wires with identical names are meant
to be connected. Complex combinational circuits are abstracted using ovals labeled with the logic they
implement.

(1) Whenever an atomic action x appears before rule y in the total order, if y < x in the original

binary relation then y is disabled from firing if x is enabled, even if the guard for y is true.

(2) If f < r where f is a method and r is a rule, then f is before r in the total order.

(3) There are no rules between any two methods in the total order.

(4) A rule is chosen to fire only if its guard is true.

The first condition ensures that the rules and methods firing in the current cycle are serializable.

The second condition ensures that no method can potentially be disabled by a rule, while the

third condition ensures that if two methods are called by the same external rule, then a rule of the

current module cannot fire in the middle of the atomic execution of the external rule calling the

two methods. The fourth condition ensures that there are no wasted scheduling slots.

The presence of calls to methods of other modules complicates this analysis [Vijayaraghavan

et al. 2013]. The called methods create another set of inputs and outputs to the circuit corresponding

to the module: inputs being the value returned by the call and the enable signal of the method, and

outputs being the argument for the call and the guard signal of the method. And, because of these

method calls, the read/write-set analysis for registers is incomplete – one also has to determine the

< relation between called methods. It can be defined recursively in the obvious manner, with the

base case being the < relation between registers.

Using the above constraints for generating the scheduler results in the schedules shown in

Figure 9 for our example in Figure 7. A solid edge represents the total order, and a dashed edge

represents the condition when a rule is disabled because another rule or method that is earlier in

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:15

the total order is enabled. Note that Figure 9 is not the exhaustive list of all valid schedules. The

Bluespec compiler has some heuristics to try to pick a schedule that enables the maximum number

of rules in a given hardware clock cycle [Esposito et al. 2010]. Figure 10 shows the final circuit

containing the scheduler (using the first schedule of Figure 9), with the combinational circuits for

rules and method definitions.

Figure 10 is missing the reset/initialization logic and the hardware clock, to avoid clutter. Every

synthesized register is clocked by an input “clock” signal and reset by an input “reset” signal. The

value to update a register is multiplexed between the initial value, whenever the reset signal is

enabled, and the value generated by atomic actions, otherwise. The “selector” in Figure 10 in front

of every register ensures that the update value that is selected corresponds to the enable signal

that is active. Since the scheduler’s constraint to avoid conflicts ensures that at most one atomic

action writes any given register at a time, only one enable signal will be active if there are multiple

atomic actions updating the same register.

In addition to circuit synthesis, the Bluespec compiler also performs Boolean optimizations

aggressively. For instance, in Figure 10, since the values of signals r4.en, r4.g, and r4.x4.en are

always the same, r4.x4.en can be fed directly into the selector, eliminating the “and” gate between

signals r4.x4.en and r4.en.

5 KAMI VERIFICATION FLOW
Verifying a Kami module is synonymous to proving that the module refines its specification module,

via repeated application of the three key high-level procedures: substituting one (sub)module

by another, inlining method definitions at call sites, and proving the implementation relation

using rule and method correspondences. We will now discuss these procedures in detail using the

examples from Section 2. For brevity, we will omit writing the parameters for prodQCons, queue,
and nativeQueue.

5.1 Substitution
Say we want to prove prodQCons ⊑ counter. Reasoning about the queue module makes this proof

more complicated than it needs to be, so we would like to pretend that queue is really nativeQueue.
In order to allow substituting any submodule in a module composition, we need properties like

associativity and commutativity, among others.

Theorem 5.1. Relation ⊑ is reflexive and transitive.

Theorem 5.2. Composition of modules is associative and commutative w.r.t. relation �.

The idea of modular refinement captures proof patterns where we substitute one module for

another and automatically derive full-system correctness via proving that the substituted module

implements the one it replaces. This kind of modularity is crucial to established reasoning techniques

for software systems, and it is just as valuable in the computer-architecture domain. It enables

developing optimized off-the-shelf modules, with clear and simple specifications, that can be

composed together to form large systems.

When proving one composite module refines another, it is useful to consider a relaxed notion

of modular refinement to relate their submodules. For instance, consider the verification problem

of proving that a cache hierarchy is an implementation of an atomic memory specification (see

Section 6.3). When a request is present in the request queue for a cache, the cache must first read

the request without dequeuing (by calling a new method peek on the queue, not present in the

queue of Figure 2). If the address is not present in the cache, it sends a request to the main memory

to fetch it, going into a wait state. Finally, when the main memory responds, the cache can dequeue

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:16 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

the original request. On the other hand, the atomic memory specification simply dequeues the

request instead of reading it first, as it always has the address. Therefore, to compare the cache

hierarchy with the atomic memory, the peek method has to be filtered out.

We formalize this notion using a function p : (Label element→ option(Label element)), which
can either remove a label element (None) or modify its argument and return values. Such trans-

formations must handle the called-method and executed-method label elements symmetrically,

i.e., f (a) = b and f (a) = b together are both mapped to None or mapped to some f (x) = y and

f (x) = y, respectively. Modification can be lifted to an operation p̂ that modifies entire labels by

applying p to each element in the label, using which we extend our notion of refinement.

Definition 5.3. If p : (Label element → option(Label element)) treats label elements symmet-

rically as explained above, then m ⊑p m′ ≜ ∀n α . m ⇓ ⟨n,α⟩ ⇒ ∃n′. m′ ⇓ ⟨n′,map p̂ α⟩.

Theorem 5.4 (modular refinement).

(1) If no methods called inm1 are defined inm2 and vice versa, and similarly form′
1
andm′

2
, then

m1 ⊑p m
′
1
∧m2 ⊑p m

′
2
⇒m1 +m2 ⊑p m

′
1
+m′

2

(2) If p changes the label elements only for methods called inm1 and defined inm2 or vice versa,
then
m1 ⊑p m

′
1
∧m2 ⊑p m

′
2
⇒m1 +m2 ⊑m

′
1
+m′

2

In the second case in Theorem 5.4, since label modification only affects the communicating

methods, which are erased in the composition, the effect of modification is not visible externally.

Thus, we can conclude refinement holds without any label modification.

We will now show how we can prove our example in Section 2 using the above theorems. By

applying commutativity and associativity appropriately, we can change the goal from prodQCons ⊑
counter to queue + (producer + consumer) ⊑ counter. Applying the modular refinement the-

orem (interacting case, with the identity mapping and with the instantiations m1 = queue,
m′

1
= nativeQueue,m2 = m′

2
= producer + consumer) and transitivity, we get three new goals

nativeQueue + (producer + consumer) ⊑ counter, queue ⊑ nativeQueue and producer +
consumer ⊑ producer + consumer. The third goal can be proved using reflexivity (and hence we

call replacing queue with nativeQueue in prodQCons a substitution because it appears as if we are

substituting one term with another while keeping the rest of the terms the same). Proving the rest

of the goals requires inlining and application of rule and method correspondences. We discuss

those next.

5.2 Inlining Method Definitions
We mentioned earlier that the semantics of method execution is similar to having the body of the

method inlined at call sites. The semantics discussed in Figure 6 does not, however, take this idea

literally. Still, we can show that static inlining is compatible with the base semantics. We will use

|m | to denote the module where all the locally defined methods of m are inlined and removed,

whenever appropriate. Then,

Theorem 5.5. m ⊑ |m |

Static inlining is very helpful for automatic verification, especially for modules without externally

visible defined methods (as composing two modules hides the methods used for communicating

between the two modules). A Kami step is comprised of several methods and (at most) one rule. If

there are no externally visible defined methods in a module, then steps are essentially one-to-one

with rule executions. When analyzing a step representing the rule during verification, it is both

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:17

1 |nativeQueue + (producer + consumer) | ≜ MODULE {
2 Register "counterReg" : Bit cSz <- Default
3 Register "elts" :< list dType <- nil
4 with Rule "produce" :=
5 Read val <- "counterReg";
6 Read elt :< list dType <- "elts";
7 Write "elts" <- #<(elt ++ [val]);
8 Write "counterReg" <- #val + $1;
9 Retv
10 with Rule "consume" :=
11 Read elt :< list dType <- "elts";
12 Assert $$@(match elt with nil => false | _ => true end);
13 Write "elts" <- #<(tl elt);
14 Let val: dType = (match elt with nil => $$c | h :: t => #h end);
15 Call "output"(#val);
16 Retv
17 }.

Fig. 11. Result of inlining the nativeQueue + (producer + consumer) module

faster and conceptually easier to inline all the methods instead of evaluating the call chain of the

rule and substituting the method bodies during analysis.

For instance, in our example in Section 2, after substitution, we are left with proving that

nativeQueue + (producer + consumer) ⊑ counter. Inlining the left side results in Figure 11.

Inlining automatically discards the method definitions enq and deq, leaving us only the two

rules to analyze, which, as mentioned earlier, directly correspond to Kami steps. If we were to

work with the original module nativeQueue + (producer + consumer), then we would have two

rules and two methods, requiring us to analyze every combination of these that form Kami steps.

Instead, applying inlining leaves the goals |nativeQueue + (producer + consumer) | ⊑ counter
and nativeQueue ⊑ queue.

A subtlety of inlining arises in connection to parameterized modules. We have seen that parame-

terization is accomplished by writing modules as Gallina functions from parameters to the syntax

of modules. The module code itself may be considered to include free variables bound by these

functions. In general, when we ask Coq to compute in code with free variables, execution may

get stuck pattern matching on those variables. Inlining, implemented as a recursive function in

Coq, is no exception, so we are not able to perform inlining on parameterized modules solely by

computation. Instead, we need to interleave steps of computation and explicit deduction via rewrite

rules establishing facts like n + “foo” , n + “bar” (using string concatenation), no matter what

value n takes. Another point to note is that while we almost always completely inline all methods

in their respective call sites, the inlining procedure is implemented on a method-by-method basis,

with a wrapper function to perform the complete inlining. This staging is crucial in allowing the

interleaving of computation steps and explicit deduction via rewrite rules.

5.3 Leveraging Rule and Method Correspondences
In order to verify that a Kami step in the implementation corresponds to a Kami step in the

specification, one has to reason about all the possible combinations of methods and rules of the

implementation (with the constraint that there can be only one rule taking part in a Kami step).

The next theorem describes a useful special case that lets us skip analyzing all such combinations.

Theorem 5.6. Letm andm′ be two modules such that eitherm defines no methods, or every method
and every rule writes to at least one common register. Let p be a label map and R be a relation between
the states ofm andm′. If

(1) The initial states ofm andm′ are related, i.e., R (initRegs(m), initRegs(m′)), and

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:18 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

(2) If states o and o′ of the implementation and specification are related, i.e., R (o,o′), and for

every singleton substep in the implementation with updates u and label ℓ, i.e., o
ℓ
−→
m

u, there is a

corresponding substep of the specification with updatesu ′ and label p̂ (ℓ), i.e., o
p̂ (ℓ)
−−−→
m′

u ′ such that

the states of the implementation and specification post-updates are related, i.e., R (o[u],o′[u ′]),

thenm ⊑p m′.

This theorem is similar to its classic LTS counterpart that proves trace inclusion by showing

a simulation relation between the states of the two transition systems. If there are no methods

defined inm, or if every method and rule write to the same register, then we cannot have Kami

substeps that combine multiple methods and rules, giving a simple one-to-one correspondence.

Using the above theorem, one can prove that |nativeQueue+(producer+consumer) | ⊑ counter
by mapping the rules produce and consume in |nativeQueue + (producer + consumer) | to an

empty rule and the incrementAndOutput rule in counter, respectively. Similarly, we can use this

theorem to prove queue ⊑ nativeQueue because both the methods of queue write to register elts.

5.4 Generator Templates in Kami
While Figure 5 represents the core syntax of the Kami language, the Kami framework also allows

cloning of n copies of a set of rules, methods, and/or modules. We write code templates that include
loops over parameter values. The identifiers representing register and method names (both in the

calls and in the definitions) defined in the template are explicitly annotated to indicate whether

they also have to be renamed (by appropriately concatenating the iterator and the name in the

template) or whether they should be the same across all members of the list. A list of modules

created this way results in the composition of the corresponding modules, and in this case, the

identifiers for register names and names of method definitions are always renamed appropriately.

The most common use for the above procedure is for creating n replicas of modules, with the

called methods also renamed appropriately. We represent such a composition of n renamed copies

of Kami modulem with n ·m. For example,

1 2 · (counter cSz) ≜
2 MODULE {
3 Register "counterReg_0" : Bit cSz <- Default
4 with Rule "incrementAndOutput_0" :=
5 Read val <- "counterReg_0";
6 Write "counterReg_0" <- #val + $1;
7 Call "output_0"(#val);
8 Retv
9 } +
10 MODULE {
11 Register "counterReg_1" : Bit cSz <- Default
12 with Rule "incrementAndOutput_1" :=
13 Read val <- "counterReg_1";
14 Write "counterReg_1" <- #val + $1;
15 Call "output_1"(#val);
16 Retv
17 }

In the case of two generated lists of modules n · a and n · b, where a and b are ordinary modules,

if the implementation relation is verified for a and b, then because of Theorems 5.1 to 5.4, we

get n · a ⊑pn n · b, where pn denotes the function formed by lifting p to operate on the label

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:19

generated by the composition of the list of modules (by dealing appropriately with iteration-

specialized identifiers). We will be using this property, informally called replication, in verifying

our multiprocessor example later.

Corollary 5.7 (replication). a ⊑p b ⇒ n · a ⊑pn n · b

Along with proving these theorems in Coq, we have also developed tactics for 1) substituting
modules with other modules, 2) inlining, and 3) applying the rule and method correspondence

theorems. These tactics automatically discharge trivial goals, such as those requiring commuta-

tivity, associativity, transitivity, reflexivity, etc. The final steps, i.e., applying the rule and method

correspondence theorems, require reasoning about complex invariants and simulation relations

between states of the implementation and specification. We have developed several proof-searching

tactics to help automate this reasoning.

6 CASE STUDY: VERIFYING A MULTIPROCESSOR
We used Kami to specify, implement, and verify a realistic multiprocessor system, or rather an

infinite family of multiprocessor systems. The underlying specification is a simple ISA semantics

with Lamport’s sequential consistency (SC) [Lamport 1979] as the memory model
§
. We formalize SC

as a Kami module and prove a trace refinement from the implementation to the spec. The processor

is pipelined in order to support simultaneous execution of multiple instructions at different stages of

their lifecycles, and the memory system contains coherent caches. We adapt pipelining techniques

and cache-coherence protocols used widely in real processors, and we structure our proof as a

sequence of refinements that take us from spec to implementation.

While the processors and the memory subsystem employ many parameters (like queue sizes,

cache sizes, line sizes, etc.), the most important parameter is the number of processors in the

multicore system; we writem(n)
to emphasize that modulem is parameterized on n, the number of

processors in the multicore system.

6.1 Sequential Consistency as a Specification
Following Lamport’s definition of sequential consistency, we designed a specification module to

represent SC. Figure 12 presents the module structure of SC. It consists of multiple instantaneous
processors (Pinst) and an instantaneous memory (Minst), i.e., SC ≜ n · Pinst +Minst.

The instantaneous processor (Pinst) and memory (Minst) handle each instruction within a single

rule (cycle). The processor fetches, decodes, and executes an instruction at once. For memory

instructions, Pinst gets the instantaneous response fromMinst, since requests to memory are also

handled within a single method. It is easy to see that this specification faithfully encodes the usual

definition of SC. In addition, we intentionally added a feature for Pinst to call tohost, which is

the only external behavior Pinst can generate, via a synthetic instruction for sending a message to

the world. Without it, SC would have no externally observable behaviors, which would make for

underwhelming final correctness theorems.

SC is abstracted over the ISA using function parameters. For example, SC is parameterized over

a function argument getOptype, which takes an instruction and returns its opcode.

6.2 Pipelined Processor Implementation
We designed and implemented a pipelined processor (P4st) and proved it implements SC. Here

we have 4 stages (Fetch, Decode, Execute, and Memory/Write-back), each drawn from common

§
We just chose sequential consistency as an example. We can verify other memory models just as easily, provided we have

their specifications.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:20 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

Minst

Pinst

Pinst

...

Pinst

tohost1

tohost2

tohostn

Fig. 12. The Sequential Consistency module (SC)

Fe
tc
h

■

D
ec
od

e

■

Ex
ec ■

■

M
em

tohost

RegFile

StallLogic

f2d d2e e2w

w2f

Fig. 13. P4st module

processor-implementation strategies. The processor also abstracts over ISA details (using the same

function parameters as the spec), and each pipeline stage interprets instructions using ISA-specific

parameters. Figure 13 presents the structure of P4st. A one-element queue (■) connects each two

adjacent stages. A register file is configured for sharing across pipeline stages. TheMem module

requests memory operations and handles the responses asynchronously, polling the memory for

data availability.

Whenever an instruction reads a register being written by an earlier instruction still being

processed in the pipeline stages, the former instruction must wait until the earlier instruction

commits its updates. We use a Boolean array to keep track of which registers are being written by

in-flight instructions, i.e., those in the pipeline. Thus, we have to make an instruction wait even

if it writes a register that is being written by an earlier in-flight instruction, to avoid premature

untracking of a register being written by two in-flight instructions.

Since an instruction has to be executed fully before determining which instruction to fetch next,

the pipeline can never process instructions concurrently unless the next instruction is fetched

speculatively. A branch predictor predicts the address of the next instruction, which is then fetched.

At the end of the memory stage, when the actual direction and address of the branch is known, if

the prediction for the next in-flight instruction was incorrect, the program counter (PC) used to

fetch instructions is corrected, and the existing in-flight instructions are marked as no-ops.

6.2.1 Proof Overview. Just as in verification of concurrent programs, the biggest hurdle for

proving the pipelined processor comes in dealing with interleaving among instruction executions.

Interleaving is inevitable in pipelined systems; any two stages can (and are expected to) operate

simultaneously, which manifests in our Bluespec-style atomic semantics by allowing n different

stages to be scheduled in any of n! possible orders. In our 4-stage processor P4st, for instance, the
next instruction can be fetched while a current instruction is executed. The strawman approach

would be to do brute-force enumeration of all possible interleavings, proving each schedule sepa-

rately. However, there are several techniques to avoid brute force. We demonstrate that the Kami

framework’s modular refinement principles help us employ one such technique, namely “stage

merging.”

The refinement from Pinst to P4st is proven through a number of steps. Firstly, we prove P4st ⊑ P3st,
in which Fetch and Decode are merged from P4st. A merged module (FD) fetches and decodes an

instruction within a single rule. One can then prove (Fetch + f2d + Decode) ⊑ FD, in the style

of the producer-consumer example in Section 2, and thus substitute FD in the original goal and

continue the proof from that point.

The decoupled processor (Pdec) acts as a next intermediate refinement step from Pinst to P3st. It
has a similar design to Pinst, except that memory requests and responses are not instantaneous.

Like P4st or P3st, it waits for the response after each request. We use rule correspondence to give a

refinement proof from Pdec to P3st. The refinement from Pinst to Pdec requires a way to translate

asynchronous memory requests/responses to instantaneous ones. As a solution, (MRqRs+MWrap)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:21

is composed with Pdec to relate it to Pinst. MRqRs consists of two queues, one for requests and

the other for responses. MWrap contains just a single rule that pulls a request, gets the result

instantaneously, and pushes the result as a response. MRqRs and MWrap are structures borrowed

from the memory subsystem (see Section 6.4).

6.3 Coherent Caches + Memory

The memory subsystem (M(n)
cache) for the multicore processor consists of coherent caches connected

by a crossbar to memory. The sizes of the caches and their cache lines (i.e., the granularity of access

in a cache, which is usually 64 bytes, as opposed to the granularity of access in a processor, which

is usually 4 or 8 bytes) are parameters.

The cache-coherence protocol is a directory-based MSI protocol [Dave et al. 2005; Sorin et al.

2011; Vijayaraghavan et al. 2015], which scales well with the number of cores. The protocol ensures

that whenever a cache has permission to write an address, no other cache has permission to read or

write that address. If a cache has read or write permission for an address, and another cache wants

to write that address, then the former cache gives up all its permission for the address. On the other

hand, if a cache has write permission for an address, and another cache wants to read that address,

then the former downgrades itself to having only read permission. The memory, in addition to

serving as a backing store for the caches, also contains a directory, which records permissions for

the different caches.

The cache-coherence protocol, in effect, is a distributed algorithm for correct synchronization of

permissions (and data) between the memory and the caches, simulating an atomic memory, which

is just an instantaneous memory (M(n)
inst), with the rules for accessing the instantaneous memory

(MWrap). Formally, M(n)
atomic ≜ n ·MWrap +M(n)

inst.

Now we outline how the Kami rules for the cache work. When a cache gets a request from its

processor, it checks to see if the cache permission is high enough to process the request. If so, it

sends back a response, performs appropriate updates, and dequeues the request.

On receiving a request that misses in the cache and hence cannot be processed immediately, the

cache first obtains a slot to keep the address (if the address is not already in the cache). This process

may involve evicting another address from the cache. After obtaining a slot for the request, an

upgrade request is sent to the memory.

When the memory gets this upgrade request, it checks to see if the other children’s cache

permissions are compatible with the requesting child’s upgrade. It does so by consulting its directory.

The invariant that we maintain in this protocol is that the directory contains a conservative estimate

of the children’s cache permissions. If the other children’s cache permissions are compatible, it

dequeues the request, upgrades the requesting child’s directory information, and sends back the

response.

On receiving a request that cannot be processed immediately because the other children’s cache

permissions are incompatible (as indicated by the directory), the memory sends downgrade requests

to the incompatible children. These children, if they have more permission than what is requested

by the parent, must downgrade and respond to the parent. A child with write permission must

also send back the data for this memory address. As the corresponding responses are obtained, the

directory is updated to reflect the downgrades, and the data is updated if the response was obtained

from a child with write permissions. Finally, when all the other children’s cache permissions have

become compatible, the original child’s request is dequeued and responded to – the data is sent by

the parent if the original child had no read or write permissions (as indicated by the directory).

Once the response from the parent is received back at the original cache for its upgrade request,

then the permission is upgraded, and the data is updated if the cache had no permissions. Finally,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:22 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

the request from the processor is dequeued (and the data again updated in case of a store), and a

response is sent back to the processor.

6.3.1 Proof Overview. We want to prove the implementation relation between our memory

system and the atomic memory:

Theorem 6.1. M(n)
cache ⊑dropPeek

n (n ·MWrap +M(n)
inst)

We use the notion of the extended implementation relation (Definition 5.3) in order to drop label

elements calling the peek method of the queue. The reason was explained in Section 5.1 – the

atomic memory specification always dequeues any incoming request, while the cache has to get

the required data and permissions after looking at the requests, before dequeuing them.

The initial step in this proof is to inlineM(n)
cache. The heart of the proof is an invariant over the

combined states of the cache-coherence system and the specification-level atomic memory, as we

run the two in lock-step through a simulation argument. The elements of the invariant are:

(1) The directory’s notion of each of the caches’ permissions for any address is conservative, i.e.,
the cache can never have more permission than what the directory indicates.

(2) Whenever a cache has read or write permission for an address, the value it has for that

address matches that in the atomic memory.

(3) Whenever a cache has write permission for an address, no other cache has read or write

permission for that address.

(4) Whenever a message is in flight from a cache to the memory for an address, and the directory

indicates that the cache has write permission for that address, then the data present in the

message matches that in the atomic memory for the address.

(5) Whenever a message is in flight from the memory to the cache for an address, and the cache

has no permission for that address, then the data present in the message matches that in the

atomic memory for the address.

(6) Whenever the directory indicates that no cache has write permission, then the data present

in the memory matches that in the atomic memory.

In order to prove these main invariants, we needed 30 additional low-level invariants that must

be proven mutually inductively. The Ltac-based automation we developed was extremely useful in

discharging most of the easy proofs, and the rest of the cases were discharged manually, with a bit

of context-specific Ltac automation.

6.4 Modular Composition of Processor and Memory
The last two subsections introduced the several refinement proofs that we carried out on the

individual components of our case study. We finish by composing these proofs together into a

full-system theorem.

Theorem 6.2 (the final refinement). n · P4st + n ·MRqRsEx +M(n)
cache ⊑ SC(n) .

The proof of this theorem is shown in Figure 14. One point to note is thatMRqRsEx consists of two
queues likeMRqRs, but the queue for requests has an additional method called peek for reading
the head of the queue (if nonempty). Just as queue ⊑ nativeQueue was proved using Theorem 5.6,

we can also prove the following:

Theorem 6.3. MRqRsEx ⊑dropPeek MRqRs.

6.5 Comments and Experiences from Our Case Study
The overall Kami infrastructure includes about 25,000 lines of code. We had to augment the standard

Coq library with our own (to define bit-vectors, etc.), adding up to about 7,000 lines. The whole

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:23

n · P4st + n ·MRqRsEx +M(n)
cache ⊑ SC(n)

(1) (2)

[transitivity]

(1)

n · P4st + n ·MRqRsEx +M(n)
cache ⊑ n · Pdec + n ·MRqRs +M(n)

atomic

[definitions]

n · P4st + n ·MRqRsEx +M(n)
cache

⊑ n · Pdec + n ·MRqRs + n ·MWrap +M(n)
inst

[modular refinement]

n · P4st ⊑ n · Pdec
[replication]

n ·MRqRsEx +M(n)
cache

⊑ n ·MRqRs + n ·MWrap +M(n)
inst

[modular refinement]

P4st ⊑ Pdec

[transitivity]

P4st ⊑ P3st

[definitions]

P3st ⊑ Pdec

[by Section 6.2.1]

Fetch + f2d + Decode
+Exec/Mem
⊑ FD + Exec/Mem

[left substitution]

Fetch + f2d + Decode ⊑ FD

[by Section 6.2.1]

n ·MRqRsEx
⊑dropPeekn n ·MRqRs

[replication]

M(n)
cache ⊑dropPeek

n

n ·MWrap +M(n)
inst

[by Theorem 6.1]

MRqRsEx ⊑dropPeek MRqRs

[by Theorem 6.3]

(2)

n · Pdec + n ·MRqRs +M(n)
atomic ⊑ SC(n)

n · Pdec + n ·MRqRs + n ·MWrap +M(n)
inst ⊑ n · Pinst +M

(n)
inst

n · Pdec + n ·MRqRs + n ·MWrap ⊑ n · Pinst

n · (Pdec +MRqRs +MWrap) ⊑ n · Pinst

Pdec +MRqRs +MWrap ⊑ Pinst

[by Section 6.2.1]

[definitions]

[left substitution]

[associativity and commutativity]

[replication]

Fig. 14. Proving the final refinement

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:24 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

multiprocessor + memory example takes about 15,000 lines, including the design of the processor

and the memory along with the supporting design library (like queues, etc.) as well as their proofs.

The cache-coherence proof was less automated than the processor proof, because the cache

invariants were complex – and it took less time to discharge individual goals manually than wait

for the proof automation to complete.

We discovered several bugs in our design while proving it (in both cache coherence and processor).

The way the bugs manifested is by creating a proof scenario (by case analysis on states, either

manually for cache coherence or automatically for the processor) where the invariants do not hold.

Another aspect of any verification infrastructure is how it deals with missing invariants. In other

words, what feedback does the system give when the invariants are weak? Again, the feedback

is via creating scenarios that cannot be proven with existing hypotheses. For the cache proof, we

worked out all the details before starting the Coq proof, so we did not run into the issue of needing

to strengthen invariants.

7 SYNTHESIS AND EVALUATION
We instantiate all the parameters of a Kami module and extract an OCaml program that, when

run, computes a Kami abstract syntax tree. We pretty-print that tree as a Bluespec program. The

Bluespec program, when passed through a Bluespec compiler, produces a Verilog netlist that can

be synthesized into FPGAs or fabricated into chips.

Currently, the entire synthesis process is part of Kami’s trusted base. The compilation from Kami

to Bluespec is not verified, but it is very straightforward. We also, unsurprisingly, have not verified

the commercial tools at the bottom of our compilation pipeline, the Bluespec compiler and the Xilinx

toolkit. Braibant and Chlipala [2013] have verified a synthesizer from a stripped-down Bluespec

language that does not support modules and method calls and which synthesizes a simple schedule,

but for now we use the (unverified) Bluespec compiler because of its superior code generation.

7.1 Synthesizing a RISC-V Multiprocessor
In order to confirm that our processor and memory design is indeed executable, we concretized the

abstract ISA into a commonly used subset of RV32I, the 32-bit integer portion of the open-source

RISC-V ISA
¶
. The subset consists of all instructions except the ones performing subword memory

accesses. We added a new TOHOST instruction, which makes the tohost call. Concretely, choosing

RISC-V requires writing all of the parameter functions (e.g., instruction decoding from binary) that

our implementation refers to.

We successfully synthesized and ran the multiprocessor system containing RISC-V cores, each

connected to a coherent L1 cache, on Xilinx’s Virtex-7 VC707 FPGA.While we verified the multicore

system for arbitrary core counts and arbitrary sizes of (direct-mapped) caches and cache lines, on

the FPGA, we synthesized a 4-core processor with 32-kilobyte direct-mapped L1 caches, where

each line holds 64 bytes.

We compared the results of synthesis of a single processor written in Kami against an independent

Bluespec implementation [Wright et al. 2016] of the full RV32I RISC-V ISA (Figure 15). The Bluespec

processor does not do any speculative execution and instead fetches and executes nonmemory

instructions atomically and executes memory instructions one cycle later, bypassing the results of

the load to the next instruction when it is executed. While the execution unit implemented by the

Bluespec processor indeed executes a bigger subset of instructions, the resource consumption is

almost entirely due to the variable-shift-left-instruction implementation (using a “barrel shifter”).

We also implement this instruction, making comparison of synthesis results reasonable. Their

¶
https://riscv.org/, see [Waterman et al. 2016]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

https://riscv.org/

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:25

Kami Bluespec

IPCaverage 0.21 1.00

Clock Frequency (MHz) 142.86 31.25

#LUTs per core 3,061 2,184

#FFs per core 1,545 3,440

Fig. 15. RISC-V cores in Kami and Bluespec

Single-threaded IPC

Euclid’s GCD 0.23

Factorial 0.22

Bubble Sort 0.25

Towers of Hanoi 0.18

Multi-threaded IPC

Shared Counter (Dekker’s) 0.19

Shared Counter (Peterson’s) 0.20

Parallel Matrix Multiply 0.20

Concurrent Bank Transactions 0.18

Fig. 16. Performance on Kami-based multiprocessor

processor runs at a much lower frequency than ours since they perform both the fetch and execute

in the same hardware clock cycle, while ours is a 4-stage pipeline. The resources utilized are

comparable (“LUTs” stands for lookup tables, a primitive for combinational circuits in an FPGA,

and “FFs” stands for flip-flops, a primitive for state in an FPGA). The synthesis results exclude the

L1 caches and the memory from both the processors (the Bluespec processor does not implement

cache coherence, as it is a single-core implementation).

We tested our multiprocessor with real RISC-V programs. The benchmark programs were

compiled from actual (multithreaded) C programs, using the RISC-V GCC, and the instruction

memory is initialized with the executable produced by GCC. We also set the initial stack-pointer

value for each processor, since these programs are directly run on our processor, with no intervening

OS. Our processor executes an average of 0.21 instructions every clock cycle per processor (IPC).

Figure 16 shows the IPC for each benchmark. Note that we instantiated the branch predictor to

always predict a branch to be not taken and have not implemented aggressive pipelining to forward

results from the execution units and memory as soon as they have been computed. Comparing

the instructions executed per second against the Bluespec processor, we are lower only by 4%

(
0.21 IPC ×142.86 MHz

1 IPC ×31.25 MHz
≈ 96%). If we had designed the same processor in both Kami and Bluespec, we

would have gotten the same synthesis results.

8 RELATEDWORK
Vijayaraghavan’s thesis [Vijayaraghavan 2016] forms the theoretical basis for our work.

Hardware verification is dominated by model checking: for instance, processor verification

[Burch and Dill 1994; McMillan 1998] and, more recently, Intel’s execution cluster verification

[Kaivola et al. 2009]. The work of Burch and Dill [1994] is notable for using symbolic execution for

automatic computation of an abstraction function of the kind that we so far write manually when

applying our Theorem 5.6. Most of model-checking-based verification is done on concrete systems

as opposed to parameterized systems. Cache-coherence protocol verification has mostly treated

systems with concrete topologies, involving particular finite numbers of caches and processors. For

instance, explicit-state model checking tools like Murphi [Dill et al. 1992] or TLC [Joshi et al. 2003;

Lamport 2002] can handle only tens of addresses and CPUs, as opposed to the billions of addresses

in a real system, or the ever-growing number of CPUs. Symbolic model checking by itself does not

do any better: a 2-level MSI protocol in the Gigamax distributed multiprocessor having two clusters

with six processors each has been verified using SMV [McMillan and Schwalbe 1992]. SMV had

been developed further into Cadence SMV [Jhala and McMillan 2001], which allows compositional

model checking. Several processor-design aspects have been verified using Cadence SMV [Lungu

and Sorin 2007], though verifications of complete processors were not reported.

There are many abstraction techniques to reduce parameterized designs to finite state spaces,

which can be explored exhaustively. Optimizations on symbolic model checking (e.g., partial order
reduction [Bhattacharya et al. 2005], symmetry reduction [Bhattacharya et al. 2006; Chen et al.

2010; Chou et al. 2004; Emerson and Kahlon 2003; Ip et al. 1996; Zhang et al. 2014], compositional

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:26 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

reasoning [Jhala and McMillan 2001; McMillan 1999, 2001], extended-FSM [Delzanno 2000], etc.)
further scale the approach. Adopting these techniques still does not fully automate model-checking-

based verification of complex systems – all the invariants obeyed by the system must be supplied

manually (similarly to the hard problem of deriving loop invariants automatically in software). ARM

has published its formal-verification workflow [Reid 2016; Reid et al. 2016], which uses bounded

model checking. They also acknowledge (in their CAV’16 paper) that they would need invariants

to get proofs of infinite families of designs, while our technique already admits such proofs. Chou

et al. [2004]; Matthews et al. [2016]; Talupur and Tuttle [2008]; Zhang et al. [2014, 2010] have all

verified cache-coherence protocols using model checking in settings where the number of cores,

number of levels in the hierarchy, etc. have been parameterized, by relying on paper-and-pencil

proofs for properties about compositions and supplying the invariants manually.

Theorem provers have been used to verify hardware designs before, e.g., HOL to verify an aca-

demic microprocessor AVI-1 [Windley 1995] or Nqthm to verify the FM9001 microprocessor [Hunt

1989; Hunt and Brock 1992, 1995]. Cache-coherence proofs have also used mechanized theorem

provers [Moore 1998; Park and Dill 1996; Vijayaraghavan et al. 2015]. All these approaches, includ-

ing the ones verified using model checking earlier, verify a model of the actual system, requiring

trust in the manual translation from hardware specifications to the model. Moreover, our work

is different in providing a general-purpose framework for hardware verification, as opposed to

verifying specific types of hardware like processors or cache systems.

Various high-level programming languages have been used to design hardware, where programs

are converted into or generate equivalent circuits. One well-known tool in the functional-languages

world is Lava [Bjesse et al. 1998], a system to specify, design, and verify hardware in Haskell. It

supports recursion but requires the corresponding description to be inlined. Functional programs

with recursive definitions have also been successfully converted without inlining [Ghica 2007;

Ghica and Smith 2010, 2011; Ghica et al. 2011]. Esterel, a language for reactive systems, has also been

used to design hardware and later embedded into HOL [Schneider 2001]. Probably the most recent

work in this tradition centers on a HDL and its semantics defined in Agda [Flor and Swierstra

2015], with functional semantics for defining, verifying, and simulating hardware designs. All

languages mentioned here, however, are defined based on (or converted to) low-level circuits, which

perhaps explains why their case studies were significantly less involved than multicore processors.

Our framework is high-level and general enough to prove full functional correctness for realistic

multicore processors with cache-coherent memory systems.

9 PRACTICAL ISSUES IN ADOPTION OF KAMI BY INDUSTRY
The hardware design and verification toolflow in industry is based on Verilog/VHDL, whose

components are easy to model as external modules that interact with a Kami module through

well-defined methods. This factoring allows designs developed and verified using Kami to be used

directly in the existing environment catering to RTL-based design and verification. That said, the

Bluespec language and its compiler are already very practical for adoption by industry. They are

supported by Bluespec, Inc., a commercial company that has existed for more than a decade. With

companies looking to protect their competitive advantages, it is tricky to lock down confirmed

uses of avant-garde tools in industry. However, from public disclosures, we know that IP blocks

in several popular commercial chips have been designed using Bluespec. Examples include a TI

display controller and an STM video data mover. (These examples also show the interoperability

of Bluespec with other hardware languages.) A variety of other big-name companies including

Hitachi, IBM, Intel, Nokia, and Qualcomm have used or continue to use Bluespec for modeling and

emulation on FPGAs. Bluespec has also been used for fabricated chips associated with research

projects published at the most prestigious venues for circuits [Juvekar et al. 2016; Lis et al. 2013;

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:27

Raina et al. 2016]. Since the same design is rarely written in both Bluespec and Verilog, careful

studies were performed to show that performance using Bluespec is actually quite competitive

and sometimes superior to hand-written Verilog [Arvind et al. 2004]. The scheduler generated by

Bluespec exactly embodies the control logic that would have been specified manually in Verilog

[Nikhil and Czeck 2010].

Synchronous hardware designs (which is the class of designs obtained by writing in traditional

HDLs like Verilog/VHDL, where the whole system performs a huge state transition on every

hardware clock tick) are also subsumed in Bluespec/Kami. Such designs can be expressed modularly

in Bluespec/Kami by having just methods for communication without rules in each module, with a

single top-level rule calling every method of every module. So, designers can mimic their traditional

synchronous design styles in Bluespec/Kami, though with more unwieldy proofs.

While all the semantically interesting features are the same between Kami and Bluespec, there

are a few practical differences: (1) Bluespec supports constructs that violate one-rule-at-a-time

semantics (namely “wires,” whose behavior depends on the schedule); and (2) Bluespec, being a

separate language by itself, contains special-purpose metaprogramming/generic-programming

features, which we replace by using Coq as a metalanguage, since Kami is a DSL inside Coq.

While verification at RTL or higher level is an important component of hardware verification, it

does not subsume all the lower-level verification tasks that go into translating hardware specifica-

tions into real silicon circuits (e.g., hand optimization of physical layout, timing analysis, register

retiming, verifying if the integrated-circuit layout corresponds to the original circuit, etc.). These

tasks are orthogonal to designing and verifying hardware systems using RTL-based languages and

tools, and the same is true when Kami is the source language.

10 CONCLUSION AND FUTUREWORK
We have developed a fairly complete infrastructure to design, verify, and synthesize hardware

systems. We have designed and verified a multiprocessor system containing RISC-V cores connected

to a fairly complicated memory system with coherent caches. While we have started developing

verified RISC-V components, we plan to scale up the realism level by designing more complex

processor optimizations (such as superscalar, out-of-order execution) verified to adhere to the

simple instantaneous-processor specification. We plan to implement a verified compiler in Coq to

translate Kami modules directly into hardware netlists. Another fruitful extension of Kami would

be to support proof of liveness properties like deadlock freedom.

ACKNOWLEDGMENTS
We thank David Dill, Andres Erbsen, Lionel Rieg, and Daniel Ziegler for their feedback on drafts.

We also thank Thomas Bourgeat, Andrew Wright, and Sizhuo Zhang, for their help in setting up

the FPGA environment for our synthesis results; and Benjamin Delaware and Christian J. Bell, for

help integrating their library code.

This work was supported in part by National Science Foundation awards CCF-1253229 and

CCF-1521584 (the latter for the Science of Deep Specification Expedition). Partial support also came

from the DARPA BRASS program, a Lincoln Labs grant, Intel’s University-Industry Collaboration

grants, Samsung GRO grants, and Arvind’s discretionary research funds. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any

copyright notation thereon. The views and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the official policies or endorsements,

either expressed or implied, of DARPA or the U.S. Government.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

24:28 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

REFERENCES
Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband, and Nirav Dave. 2004. High-level synthesis: an essential ingredient for

designing complex ASICs. In 2004 International Conference on Computer-Aided Design, ICCAD 2004, San Jose, CA, USA,
November 7-11, 2004. IEEE Computer Society / ACM, 775–782. https://doi.org/10.1109/ICCAD.2004.1382681

Ritwik Bhattacharya, Steven German, and Ganesh Gopalakrishnan. 2005. Symbolic Partial Order Reduction for Rule Based

Transition Systems. In Correct Hardware Design and Verification Methods, Dominique Borrione and Wolfgang Paul (Eds.).

Lecture Notes in Computer Science, Vol. 3725. Springer Berlin Heidelberg, 332–335. https://doi.org/10.1007/11560548_25

Ritwik Bhattacharya, Steven M. German, and Ganesh Gopalakrishnan. 2006. Exploiting symmetry and transactions for

partial order reduction of rule based specifications. In Antti Valmari, editor, SPIN, volume 3925 of Lecture Notes in Computer
Science. Springer, 252–270.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: Hardware Design in Haskell. In Proceedings of the
Third ACM SIGPLAN International Conference on Functional Programming (ICFP ’98). ACM, New York, NY, USA, 174–184.

https://doi.org/10.1145/289423.289440

Thomas Braibant and Adam Chlipala. 2013. Formal Verification of Hardware Synthesis. In CAV 2013, 25th International
Conference on Computer Aided Verification (Lecture Notes in Computer Science), Vol. 8044. Springer, 213–228. http:

//gallium.inria.fr/~braibant/fe-si/

Jerry R Burch and David L Dill. 1994. Automatic verification of pipelined microprocessor control. In Computer Aided
Verification. Springer, 68–80.

Xiaofang Chen, Yu Yang, Ganesh Gopalakrishnan, and Ching-Tsun Chou. 2010. Efficient Methods for Formally Verifying

Safety Properties of Hierarchical Cache Coherence Protocols. Form. Methods Syst. Des. 36, 1 (Feb. 2010), 37–64. https:
//doi.org/10.1007/s10703-010-0092-y

Adam Chlipala. 2008. Parametric Higher-order Abstract Syntax for Mechanized Semantics. In Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’08). ACM, New York, NY, USA, 143–156.

https://doi.org/10.1145/1411204.1411226

Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. 2004. A simple method for parameterized verification of

cache coherence protocols. In Formal Methods in Computer Aided Design. Springer, 382–398.
Nirav Dave, Arvind, and Michael Pellauer. 2007. Scheduling as Rule Composition. In 5th ACM& IEEE International Conference

on Formal Methods and Models for Co-Design (MEMOCODE 2007), May 30 - June 1st, Nice, France. IEEE Computer Society,

51–60. https://doi.org/10.1109/MEMCOD.2007.371249

Nirav Dave, Man Cheuk Ng, and Arvind. 2005. Automatic synthesis of cache-coherence protocol processors using Bluespec.

In 3rd ACM & IEEE International Conference on Formal Methods and Models for Co-Design (MEMOCODE 2005), 11-14 July
2005, Verona, Italy, Proceedings. IEEE Computer Society, 25–34. https://doi.org/10.1109/MEMCOD.2005.1487887

Giorgio Delzanno. 2000. Automatic Verification of Parameterized Cache Coherence Protocols. In Computer Aided Verification,
E. Allen Emerson and Aravinda Prasad Sistla (Eds.). Lecture Notes in Computer Science, Vol. 1855. Springer Berlin

Heidelberg, 53–68. https://doi.org/10.1007/10722167_8

D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang. 1992. Protocol verification as a hardware design aid. In Computer Design:
VLSI in Computers and Processors, 1992. ICCD ’92. Proceedings, IEEE 1992 International Conference on. 522–525. https:
//doi.org/10.1109/ICCD.1992.276232

E. Allen Emerson and Vineet Kahlon. 2003. Exact and Efficient Verification of Parameterized Cache Coherence Protocols. In

Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME
2003, L’Aquila, Italy, October 21-24, 2003, Proceedings. 247–262. https://doi.org/10.1007/978-3-540-39724-3_22

Thomas M Esposito, Mieszko Lis, Ravi A Nanavati, Joseph E Stoy, and Jacob B Schwartz. 2010. System and method for

scheduling TRS rules. (Jan. 12 2010). US Patent 7,647,567.

Joao Paulo Pizani Flor andWouter Swierstra. 2015. Π-Ware: An Embedded Hardware Description Language using Dependent

Types. TYPES 2015 (2015), 67.
Dan R. Ghica. 2007. Geometry of Synthesis: A Structured Approach to VLSI Design. In Proceedings of the 34th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’07). ACM, New York, NY, USA, 363–375.

https://doi.org/10.1145/1190216.1190269

Dan R. Ghica and Alex Smith. 2010. Geometry of Synthesis II: From Games to Delay-Insensitive Circuits. Electron. Notes
Theor. Comput. Sci. 265 (Sept. 2010), 301–324. https://doi.org/10.1016/j.entcs.2010.08.018

Dan R. Ghica and Alex Smith. 2011. Geometry of Synthesis III: Resource Management Through Type Inference. In Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New

York, NY, USA, 345–356. https://doi.org/10.1145/1926385.1926425

Dan R. Ghica, Alex Smith, and Satnam Singh. 2011. Geometry of Synthesis IV: Compiling Affine Recursion into Static

Hardware. In Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (ICFP ’11). ACM,

New York, NY, USA, 221–233. https://doi.org/10.1145/2034773.2034805

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

https://doi.org/10.1109/ICCAD.2004.1382681
https://doi.org/10.1007/11560548_25
https://doi.org/10.1145/289423.289440
http://gallium.inria.fr/~braibant/fe-si/
http://gallium.inria.fr/~braibant/fe-si/
https://doi.org/10.1007/s10703-010-0092-y
https://doi.org/10.1007/s10703-010-0092-y
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1109/MEMCOD.2007.371249
https://doi.org/10.1109/MEMCOD.2005.1487887
https://doi.org/10.1007/10722167_8
https://doi.org/10.1109/ICCD.1992.276232
https://doi.org/10.1109/ICCD.1992.276232
https://doi.org/10.1007/978-3-540-39724-3_22
https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1016/j.entcs.2010.08.018
https://doi.org/10.1145/1926385.1926425
https://doi.org/10.1145/2034773.2034805

Kami: High-Level Parametric Hardware Specification and its Modular Verification 24:29

James C. Hoe and Arvind. 2000. Synthesis of Operation-Centric Hardware Descriptions. In Proceedings of the 2000 IEEE/ACM
International Conference on Computer-Aided Design, 2000, San Jose, California, USA, November 5-9, 2000, Ellen Sentovich

(Ed.). IEEE Computer Society, 511–518. https://doi.org/10.1109/ICCAD.2000.896524

Warren A. Hunt. 1989. Microprocessor design verification. Journal of Automated Reasoning 5, 4 (1989), 429–460. https:

//doi.org/10.1007/BF00243132

Warren A. Hunt and Bishop C. Brock. 1992. A Formal HDL and its Use in the FM9001 Verification. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 339, 1652 (1992), 35–47. https:

//doi.org/10.1098/rsta.1992.0024 arXiv:http://rsta.royalsocietypublishing.org/content/339/1652/35.full.pdf

W. A. Hunt and B. C. Brock. 1995. The DUAL-EVAL hardware description language and its use in the formal specification

and verification of the FM9001 microprocessor. In Design Automation Conference, 1995. Proceedings of the ASP-DAC
’95/CHDL ’95/VLSI ’95., IFIP International Conference on Hardware Description Languages. IFIP International Conference on
Very Large Scal. 637–642. https://doi.org/10.1109/ASPDAC.1995.486381

Chung-Wah Norris Ip, David L. Dill, and John C. Mitchell. 1996. State Reduction Methods For Automatic Formal Verification.

(1996).

Ranjit Jhala and Kenneth L. McMillan. 2001. Microarchitecture Verification by Compositional Model Checking. In Computer
Aided Verification: 13th International Conference, Paris, France, July 18–22, 2001 Proceedings, Gérard Berry, Hubert Comon,

and Alain Finkel (Eds.). Springer, Berlin, Heidelberg, 396–410. https://doi.org/10.1007/3-540-44585-4_40

Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark R. Tuttle, and Yuan Yu. 2003. Checking Cache-Coherence

Protocols with TLA
+
. Formal Methods in System Design 22, 2 (2003), 125–131. https://doi.org/10.1023/A:1022969405325

Chiraag Juvekar, Hyung-Min Lee, Joyce Kwong, and Anantha P. Chandrakasan. 2016. A Keccak-based wireless authentication

tag with per-query key update and power-glitch attack countermeasures. In 2016 IEEE International Solid-State Circuits
Conference, ISSCC 2016, San Francisco, CA, USA, January 31 - February 4, 2016. IEEE, 290–291. https://doi.org/10.1109/
ISSCC.2016.7418021

Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore, Sudhindra Pandav, Anna Slobodová,

Christopher Taylor, Vladimir Frolov, Erik Reeber, et al. 2009. Replacing Testing with Formal Verification in Intel
®

Core
TM

i7 Processor Execution Engine Validation. In Computer Aided Verification. Springer, 414–429.
Michal Karczmarek, Arvind, and Muralidaran Vijayaraghavan. 2014. A new synthesis procedure for atomic rules containing

multi-cycle function blocks. In Twelfth ACM/IEEE International Conference on Formal Methods and Models for Codesign,
MEMOCODE 2014, Lausanne, Switzerland, October 19-21, 2014. IEEE, 22–31. https://doi.org/10.1109/MEMCOD.2014.

6961840

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal

Verification of an OS Kernel. In Proc. SOSP. ACM, 207–220.

Leslie Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs. Computers,
IEEE Transactions on 100, 9 (1979), 690–691.

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In Proc.
POPL. ACM, 42–54.

Mieszko Lis, Keun Sup Shim, Brandon Cho, Ilia Lebedev, and Srinivas Devadas. 2013. Hardware-level thread migration in a

110-core shared-memory multiprocessor. In Hot Chips 25 Symposium (HCS), 2013 IEEE. IEEE, 1–27.
Anita Lungu and Daniel J. Sorin. 2007. Verification-Aware Microprocessor Design. In Proceedings of the 16th International

Conference on Parallel Architecture and Compilation Techniques (PACT ’07). IEEE Computer Society, Washington, DC,

USA, 83–93. https://doi.org/10.1109/PACT.2007.79

Opeoluwa Matthews, Jesse D. Bingham, and Daniel J. Sorin. 2016. Verifiable hierarchical protocols with network invariants

on parametric systems. In 2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, October
3-6, 2016, Ruzica Piskac and Muralidhar Talupur (Eds.). IEEE, 101–108. https://doi.org/10.1109/FMCAD.2016.7886667

K.L. McMillan. 1999. Verification of Infinite State Systems by Compositional Model Checking. In Correct Hardware Design
and Verification Methods, Laurence Pierre and Thomas Kropf (Eds.). Lecture Notes in Computer Science, Vol. 1703.

Springer Berlin Heidelberg, 219–237. https://doi.org/10.1007/3-540-48153-2_17

K.L. McMillan and James Schwalbe. 1992. Formal verification of the Gigamax cache consistency protocol. In Proceedings of
the International Symposium on Shared Memory Multiprocessing. 111–134.

Kenneth L McMillan. 1998. Verification of an implementation of Tomasulo’s algorithm by compositional model checking. In

Computer Aided Verification. Springer, 110–121.
K. L. McMillan. 2001. Parameterized verification of the FLASH cache coherence protocol by compositional model checking.

In CHARME 01: IFIP Working Conference on Correct Hardware Design and Verification Methods, Lecture Notes in Computer
Science 2144. Springer, 179–195.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

https://doi.org/10.1109/ICCAD.2000.896524
https://doi.org/10.1007/BF00243132
https://doi.org/10.1007/BF00243132
https://doi.org/10.1098/rsta.1992.0024
https://doi.org/10.1098/rsta.1992.0024
http://arxiv.org/abs/http://rsta.royalsocietypublishing.org/content/339/1652/35.full.pdf
https://doi.org/10.1109/ASPDAC.1995.486381
https://doi.org/10.1007/3-540-44585-4_40
https://doi.org/10.1023/A:1022969405325
https://doi.org/10.1109/ISSCC.2016.7418021
https://doi.org/10.1109/ISSCC.2016.7418021
https://doi.org/10.1109/MEMCOD.2014.6961840
https://doi.org/10.1109/MEMCOD.2014.6961840
https://doi.org/10.1109/PACT.2007.79
https://doi.org/10.1109/FMCAD.2016.7886667
https://doi.org/10.1007/3-540-48153-2_17

24:30 J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind

J Strother Moore. 1998. An ACL2 Proof of Write Invalidate Cache Coherence. In Proc. CAV’98, volume 1427 of LNCS. Springer,
29–38.

Rishiyur S Nikhil and Kathy R Czeck. 2010. BSV by Example. CreateSpace, Dec (2010).
Seungjoon Park and David L. Dill. 1996. Verification of FLASH Cache Coherence Protocol by Aggregation of Distributed

Transactions. In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and Architectures. ACM Press,

288–296.

Priyanka Raina, Mehul Tikekar, and Anantha P. Chandrakasan. 2016. An energy-scalable accelerator for blind image

deblurring. In ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, Switzerland, September
12-15, 2016. IEEE, 113–116. https://doi.org/10.1109/ESSCIRC.2016.7598255

Alastair Reid. 2016. Trustworthy Specifications of ARMR v8-A and v8-M System Level Architecture. In Formal Methods in
Computer-Aided Design, FMCAD.

Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd,

Peter Vrabel, and Ali Zaidi. 2016. End-to-End Verification of Processors with ISA-Formal. In Computer Aided Verification
- 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II (Lecture Notes in
Computer Science), Swarat Chaudhuri and Azadeh Farzan (Eds.), Vol. 9780. Springer, 42–58. https://doi.org/10.1007/

978-3-319-41540-6_3

Daniel L. Rosenband and Arvind. 2004. Modular scheduling of guarded atomic actions. In Proceedings of the 41th Design
Automation Conference, DAC 2004, San Diego, CA, USA, June 7-11, 2004, Sharad Malik, Limor Fix, and Andrew B. Kahng

(Eds.). ACM, 55–60. https://doi.org/10.1145/996566.996583

Klaus Schneider. 2001. A Verified Hardware Synthesis of Esterel Programs. Springer US, Boston, MA, 205–214. https:

//doi.org/10.1007/978-0-387-35409-5_20

Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache Coherence. Syn-
thesis Lectures on Computer Architecture 6, 3 (2011), 1–212. https://doi.org/10.2200/S00346ED1V01Y201104CAC016

arXiv:http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016

M. Talupur and Mark R. Tuttle. 2008. Going with the Flow: Parameterized Verification Using Message Flows. In Formal
Methods in Computer-Aided Design, 2008. FMCAD ’08. 1–8. https://doi.org/10.1109/FMCAD.2008.ECP.14

Muralidaran Vijayaraghavan. 2016. Modular Verification of Hardware Systems. Ph.D. Dissertation. http://hdl.handle.net/
1721.1/106096

Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave. 2015. Modular Deductive Verification of Multipro-

cessor Hardware Designs. In Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part II (Lecture Notes in Computer Science), Daniel Kroening and Corina S. Pasareanu

(Eds.), Vol. 9207. Springer, 109–127. https://doi.org/10.1007/978-3-319-21668-3_7

Muralidaran Vijayaraghavan, Nirav Dave, and Arvind. 2013. Modular compilation of guarded atomic actions. In 11th
ACM/IEEE International Conference on Formal Methods and Models for Codesign, MEMCODE 2013, Portland, OR, USA,
October 18-20, 2013. IEEE, 177–188. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6670957

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2016. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Version 2.1. Technical Report UCB/EECS-2016-118. EECS Department, University of California, Berkeley.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html

Phillip J. Windley. 1995. Formal modeling and verification of microprocessors. Computers, IEEE Transactions on 44, 1 (1995),

54–72.

Andy Wright, Sizhuo Zhang, Thomas Bourgeat, Muralidaran Vijayaraghavan, Jamey Hicks, and Arvind. 2016. Riscy

Processors: A collection of open-sourced RISC-V processors. In 4th RISC-V Workshop. https://riscv.org/wp-content/
uploads/2016/07/Wed830_Riscy_Processors_V1.pdf

Meng Zhang, Jesse D. Bingham, John Erickson, and Daniel J. Sorin. 2014. PVCoherence: Designing flat coherence protocols

for scalable verification. In 20th IEEE International Symposium on High Performance Computer Architecture, Orlando, FL,
USA, February 15-19, 2014. IEEE Computer Society, 392–403. https://doi.org/10.1109/HPCA.2014.6835949

Meng Zhang, Alvin R. Lebeck, and Daniel J. Sorin. 2010. Fractal Coherence: Scalably Verifiable Cache Coherence. In

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’43). IEEE Computer

Society, Washington, DC, USA, 471–482. https://doi.org/10.1109/MICRO.2010.11

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 24. Publication date: September 2017.

https://doi.org/10.1109/ESSCIRC.2016.7598255
https://doi.org/10.1007/978-3-319-41540-6_3
https://doi.org/10.1007/978-3-319-41540-6_3
https://doi.org/10.1145/996566.996583
https://doi.org/10.1007/978-0-387-35409-5_20
https://doi.org/10.1007/978-0-387-35409-5_20
https://doi.org/10.2200/S00346ED1V01Y201104CAC016
http://arxiv.org/abs/http://dx.doi.org/10.2200/S00346ED1V01Y201104CAC016
https://doi.org/10.1109/FMCAD.2008.ECP.14
http://hdl.handle.net/1721.1/106096
http://hdl.handle.net/1721.1/106096
https://doi.org/10.1007/978-3-319-21668-3_7
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6670957
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
https://riscv.org/wp-content/uploads/2016/07/Wed830_Riscy_Processors_V1.pdf
https://riscv.org/wp-content/uploads/2016/07/Wed830_Riscy_Processors_V1.pdf
https://doi.org/10.1109/HPCA.2014.6835949
https://doi.org/10.1109/MICRO.2010.11

	Abstract
	1 Introduction
	2 Kami by Example
	3 Kami Language: Syntax and Semantics
	3.1 Syntax
	3.2 Semantics
	3.3 Implementation Relation

	4 Compilation into Hardware circuits
	5 Kami Verification Flow
	5.1 Substitution
	5.2 Inlining Method Definitions
	5.3 Leveraging Rule and Method Correspondences
	5.4 Generator Templates in Kami

	6 Case Study: Verifying a Multiprocessor
	6.1 Sequential Consistency as a Specification
	6.2 Pipelined Processor Implementation
	6.3 Coherent Caches + Memory
	6.4 Modular Composition of Processor and Memory
	6.5 Comments and Experiences from Our Case Study

	7 Synthesis and Evaluation
	7.1 Synthesizing a RISC-V Multiprocessor

	8 Related Work
	9 Practical issues in Adoption of Kami by Industry
	10 Conclusion and Future work
	References

